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Abstract. We report our results for the bag parameter BK obtained from the quenched simulations on
the lattice with Wilson fermions for three values of the lattice spacing. We implemented the method by
which no subtraction of the mixing with other four-fermion ∆S = 2 operators is needed. Our final result,
in terms of the renormalization group invariant bag parameter, is B̂K = 0.96 ± 0.10.

1 Introduction

The parameter characterizing the size of the indirect CP -
violation in the system of neutral kaons, εK , has been
accurately measured since long ago [1]. The precise theo-
retical estimate of the corresponding K0–K0 mixing am-
plitude, however, is still missing due to uncertainties in
the computation of the matrix element of the operator

O∆S=2 = (s̄Aγµ(1 − γ5)dA)(s̄Bγµ(1 − γ5)dB)
= Q1 + Q1 , (1)

where Q1 and Q1 are respectively the parity conserving
and parity violating part of O∆S=2. A and B are the color
indices. The matrix element of the renormalized operator,

〈K̄0|Ô∆S=2(µ)|K0〉 = 〈K̄0|Q̂1(µ)|K0〉
=

8
3
f2

Km2
KBK(µ) , (2)

is conveniently parameterized in terms of the bag param-
eter BK , the measure of the deviation of the matrix el-
ement from its value obtained in the vacuum saturation
approximation (in which BK = 1).

Over the past two decades quite an impressive progress
in computing BK on the lattice has been made. We
now know how to renormalize the four-fermion opera-
tor Q1 non-perturbatively in the RI/MOM [2] and in the
Schrödinger functional scheme [3]. We also know how to
relate to B̂K , the renormalization scheme invariant bag
parameter, since the anomalous dimension is calculated
in a number of schemes at NLO in continuum perturba-
tion theory [4–6], the same accuracy at which the cor-
responding Wilson coefficient has been calculated [7]. A
high statistics computation of BK with Wilson fermions
for several values of the lattice spacing a has been per-
formed in [8]. Preliminary unquenched calculations have

been made too [9]. However, all the works in which the
Wilson quarks were used suffer from the potentially large
systematic uncertainty that arises from the large mixing
of the operator Q1 with other parity-even operators Q2−5
which have different naive chiralities1. That feature is a
consequence of the explicit chiral symmetry breaking in-
duced by the Wilson term in the quark action. In other
words, the renormalization pattern of the lattice operator
Q1 regularized à la Wilson is

Q̂1(µ) = Z(aµ)

[
Q1(a) +

5∑
i=2

∆i(a)Qi(a)

]
, (3)

where Z(aµ) is the multiplicative renormalization con-
stant present also in formulations where chiral symmetry
is preserved, while ∆2−5(a) are the mixing coefficients pe-
culiar for the Wilson regularization. The difficulty is not
only that one needs to compute the subtraction constants
∆2−5(a) non-perturbatively but one should also compute
them very accurately because the lattice regularized bare
matrix elements 〈Q2−5〉 are orders of magnitude larger
than 〈Q1〉. Therefore, even though the subtraction con-
stants are numerically very small (see the tables in [10]2),
the net effect of the subtractions is large. It is clearly de-
sirable to have a method that allows one to compute the
matrix element (2) without necessity to subtract the mix-
ing.

In this article we use the hadronic Ward identity, pro-
posed in [11], to relate the matrix element of the operator
Q1 to the parity violating one, Q1. The latter does not suf-

1 For the explicit forms of all the parity-even operators,
Q1−5, see e.g. Sect. 3.2 of [2].

2 To avoid a notational ambiguity we point out that the sub-
traction constants ∆12(a), . . . , ∆15(a) presented in [10] corre-
spond to ∆2(a), . . . , ∆5(a) used in this article.



316 D. Bećirević et al.: BK from the lattice with Wilson quarks

fer from the spurious mixing and thus the problem of mix-
ing with other dimension-six operators is circumvented.
The price to pay is that one has to compute a four-point
correlation function where one pion is integrated over all
lattice space-time coordinates. Similar in spirit, but quite
different in practice, is the proposal made in [12] where
the chiral rotation has been added to the mass term so as
to kill the spurious lattice mixings. A preliminary study
of the BK parameter by using that method has been pre-
sented in [13].

In Sect. 2 we will briefly recall the basic elements of
the Ward identity method to compute BK without sub-
tractions; in Sect. 3 we present the results for the matrix
element (2) for the directly accessible pseudoscalar meson
masses from which we will extract the B̂K parameter; in
Sect. 4 we briefly draw our conclusions.

2 Strategy

In this section we will briefly recall the main steps in-
volved in the extraction of the BK-parameter by using
both methods, with and without subtractions.

2.1 Standard procedure: “with subtractions”

The standard way to extract the matrix element (2) pro-
ceeds through the computation of the correlation functions

GK0
P
(t) = 〈K0 †

P (t)K0
P (0)〉 ,

GQ̂1
(tx, ty) = 〈K0 †

P (tx)Q̂1(0)K0
P (ty)〉 , (4)

with Q̂1 defined in (3), and K0
P (tx) =

∑
x d̄(x)γ5s(x).

Therefore to get GQ̂1
(tx, ty) one must compute the cor-

relators by using the complete set of parity conserving
four-fermion operators, Q1−5, subtract the spurious mix-
ing, and provide the multiplicative renormalization, as
indicated in (3). This procedure is particularly delicate
because the approximate restoration of chiral symmetry
(which is exactly recovered only in the continuum limit)
depends on how well the subtractions are made. The sub-
traction constants ∆2−5 do not depend on the renormal-
ization scheme. Their values have been recently estimated
non-perturbatively, in the RI/MOM scheme [10].

The matrix element (2) is extracted from the study of
the large time asymptotic behavior of the ratio

Rstand(ty)

=
GQ̂1

(tx, ty)

GK0
P
(tx)GK0

P
(ty)

⇒
T � ty � T/2

〈K̄0|Q̂1|K0〉
|〈0|K0

P |K0〉|2 , (5)

where we fix one of the source operators at tx so that the
kaon state which is created by the four-fermion operator
in the origin is already asymptotic when annihilated by
K0

P (tx). The time ty, instead, is free. On the plateaus,
T � ty � T/2, where all the operators are far away
from one another, we read off the desired matrix element
divided by the pseudoscalar density squared.

2.2 Alternative procedure: “without subtractions”

The method proposed in [11] is based on the use of a Ward
identity which arises from applying the τ3 axial rotation,

δu(x) = iα(x)γ5u(x) , δū(x) = iα(x)ū(x)γ5 ,

δd(x) = −iα(x)γ5d(x) , δd̄(x) = −iα(x)d̄(x)γ5 , (6)

onto the matrix element 〈K̂0
P (x)Q̂1(0)K̂0

P (y)〉, where
K̂0

P = ZP K0
P . To write down the relevant Ward identity,

we introduce the bilinear operators

K0
S(t) =

∑
x

d̄(x)s(x) ,

Π0(x) = d̄(x)γ5d(x) − ū(x)γ5u(x) , (7)

and the corresponding renormalized K̂0
S(t) = ZSK0

S(t).
With these definitions at hand the renormalized Ward
identity reads

2〈K̂0
P (tx)Q̂1(0)K̂0

P (ty)〉
= 2m

∑
z

〈Π̂0(z)K̂0
P (tx)Q̂1(0)K̂0

P (ty)〉

− 〈K̂0
S(tx)Q̂1(0)K̂0

P (ty)〉 − 〈K̂0
P (tx)Q̂1(0)K̂0

S(ty)〉
+ O(a) , (8)

where, in view of the fact that we work in the chiral
limit, we dropped the sum over the space-time of the term
containing the divergence of the axial current, which ap-
pears, together with the first term on the RHS contain-
ing 2mΠ0(z). The dropped term is zero when there is no
momentum transfer between the initial and final states,
provided that no singularities are encountered. Working
at non-zero quark mass then ensures that infrared diver-
gences are avoided, so that the integration over space-time
indeed yields a vanishing value. In practice, we work in
the SU(3) limit, i.e., we take all three quarks to be de-
generate in mass, mu = md = ms ≡ m. The term on the
LHS of (8), corresponding to the rotation of the operator
Q1, is the desired matrix element. The last two terms in
(8) correspond to the rotation of the pseudoscalar kaon
sources. These terms, although necessary to saturate the
Ward identity, disappear in the SU(3) limit as shown in
the appendix. Thus, the Ward identity we use in practice
reads

〈K0
P (tx)Q̂1(0)K0

P (ty)〉
= m(aµ)Z(aµ)

∑
z

〈Π̂0(z)K0
P (tx)Q1(0)K0

P (ty)〉

≡ GQ1(tx, ty) , (9)

where we stress the presence of O(a) artefacts, i.e., the
four-fermion operators are not improved. Owing to CPS
symmetry the parity-odd operator Q1 renormalizes mul-
tiplicatively only. Z(aµ) has been recently computed non-
perturbatively in the RI/MOM scheme [10]. We use the
quark mass, m(aµ) = ρZA(a)/ZP (aµ), defined through
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the non-singlet axial Ward identity,

ρ =
〈∇0A0(t) K0†

P (0)〉
2〈K0

P (t) K0†
P (0)〉 , (10)

where Aµ(t) =
∑

x s̄(x)γµγ5d(x), and ZA(a) is the axial-
current renormalization factor [10]. Notice also that in (9)
the renormalization constant of the pseudoscalar density,
ZP (aµ), in m(aµ) cancels against the one in Π̂0(z). In
terms of Feynman diagrams, (9) can be written as

2
[
C8(tx, ty) + D8(tx, ty)

]
= 2ZAρ

[
CE(tx, ty) + CE(ty, tx) + DE(tx, ty)

+DE(ty, tx)
]
, (11)

where C8(tx, ty) and D8(tx, ty) correspond to the
connected and disconnected “eight” diagrams, while
CE(ty, tx) and DE(ty, tx) refer to the connected and dis-
connected “emission” diagrams shown in Fig. 1 of [11].
Proceeding like in the standard method, the matrix el-
ement is extracted from the study of the ratio,

Rw/o subtr.(ty)

=
GQ1(tx, ty)

GK0
P
(tx)GK0

P
(ty)

⇒
T � ty � T/2

〈K̄0|Q̂1|K0〉
|〈0|K0

P |K0〉|2 . (12)

3 Extraction of BK

In this section we present our main results. We use both
procedures, the standard and the one without subtrac-
tions, which provides us a useful cross-check. Of course
the two methods suffer from O(a) effects that are differ-
ent in size, but should converge to the same value in the
continuum limit.

3.1 Lattices and signals for the ratios (5) and (12)

The details of our lattice setups were presented in our
previous publications [10,14]. We work at three lattice
spacings which correspond to β = 6.0, 6.2, and to 6.4.
In each simulation we work with four different values of
the quark mass, i.e., with four values of the parameter κ,
and compute the correlation functions needed to form the
ratios (5) and (12).

In Fig. 1 we show the signals we obtain by using both
methods and for all quark masses used in our simula-
tions (the κ are ordered as m1 > m2 > m3 > m4). The
plateaus correspond to the signals for the bare operators,
i.e. without accounting for the overall (scale dependent)
renormalization constants Z(aµ) and Z(aµ). For the stan-
dard method we need to specify the subtraction constants
∆2−5(a). We use the results recently obtained in [10]. In
our calculation one source operator is fixed at

tx = 12|β=6.0, 15|β=6.2, 17|β=6.4 , (13)
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Fig. 1. Plateaus for the ratios defined in (5) and (12) which
are referred to as the standard procedure (right plots) and the
one without subtractions (left plots). Plateaus are displayed
for all 4 quark masses and for all three β’s used in this work

after having checked that the signal does not change for
larger tx, except that the plateaus become slightly shorter.

To account for the multiplicative renormalization we
proceed as follows. We employ the method described in
detail in [10], to compute the renormalization constants
Z(aµ) and Z(aµ) in the RI/MOM scheme at about 20 dif-
ferent values of the scale aµ. We then convert such renor-
malized ratios Rstand.(ty) and Rw/o subtr.(ty) into their
renormalization invariant forms by using the perturbative
anomalous dimension known at NLO accuracy [5], namely

〈Q1〉rgi = αs(µ)−γ0/2β0

(
1 +

αs(µ)
4π

JRI/MOM

)
× 〈Q1(µ)〉RI/MOM, (14)

where γ0 = 4 and β0 = 11 − 2nf/3 are universal and

JRI/MOM = 8 log 2 − 17397 − 2070nf + 104n2
f

6(33 − 2nf)2
.(15)

The plateaus used to fit the ratios Rstand.(ty) and
Rw/o subtr.(ty) to constants Rstand. and Rw/o subtr., re-
spectively, for each value of the renormalization scale aµ,
are

tplateau ∈ {[36, 42]β=6.0, [43, 52]β=6.2, [49, 58]β=6.4} . (16)

In Fig. 2 we illustrate both ratios computed at 24 different
values of the renormalization scale at β = 6.2, and then
converted to the renormalization group invariant form. Af-
ter proceeding similarly for the other lattice spacings, we
find that for (r0µ)2 ≥ 40, the ratios R̂stand. and R̂w/o subtr.

nicely follow the perturbatively established scale depen-
dence (14). After fitting these results to a constant on the
interval 40 ≤ (r0µ)2 ≤ 100 we obtain the results listed in
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Table 1. The values of the (bare) quark mass, ρ, obtained by using the axial
Ward identity (10), of the quantity X, defined in (17), and of the matrix
element R obtained by using both methods. The R are computed from the fit
of the ratios (5) and (12) to a constant on the plateau intervals indicated in
(16)

β κ ρ × 102 X(mq) R̂stand.(a) R̂w/o subtr.(a)
6.0 0.1335 5.997(7) 0.1256(20) 0.1356(59) 0.1152(45)

0.1338 4.368(8) 0.1051(19) 0.1124(55) 0.0925(42)
0.1340 3.750(8) 0.0910(18) 0.0969(52) 0.0776(39)
0.1342 3.129(9) 0.0765(16) 0.0812(48) 0.0629(36)

6.2 0.1339 5.792(7) 0.1766(53) 0.188(13) 0.1732(97)
0.1344 4.268(7) 0.1348(48) 0.142(12) 0.1277(86)
0.1349 2.748(7) 0.0891(40) 0.092(12) 0.0802(72)
0.1352 1.834(8) 0.0589(35) 0.060(11) 0.0503(57)

6.4 0.1347 3.144(2) 0.1336(45) 0.1363(93) 0.1226(79)
0.1349 2.540(3) 0.1078(45) 0.1087(88) 0.0954(74)
0.1351 1.937(3) 0.0809(44) 0.0804(79) 0.0681(65)
0.1353 1.334(3) 0.0536(41) 0.0518(65) 0.0409(49)
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Fig. 2. Fit of the ratio R(ty) [see (5) and (12)] to a constant
R̂ ≡ Rrgi in the interval 40 ≤ (µr0)2 ≤ 100. The lower plot cor-
responds to the case in which the effect of mixing with other
∆S = 2 operators has been subtracted. In the upper plot the
Ward identity method (without subtractions) has been em-
ployed. Illustration is provided with the results collected at
β = 6.2, and for κ = 0.1344

Table 1. To convert from aµ to r0µ we used the accurately
estimated r0/a from [15], while in the calculation of the
two-loop running coupling, αs(r0µ), we used the quenched
value r0Λ

(nf=0)
MS

= 0.602(48) [16]. In Table 1 we also give
the values of the bare quark mass ρ, computed from the
axial Ward identity (10), and of the quantity X(mq) de-
fined as

8
3

Z2
A 〈A0(t) A†

0(0)〉
〈K0

P (t) K0†
P (0)〉

⇒
T � t � 0

8
3

f2
P m2

P

|〈0|K0
P |K0〉|2 ≡ X(mq) ,

(17)

where mP and fP are the mass and the decay constant
of the pseudoscalar meson consisting of two degenerate
quarks of mass mq.

Before discussing our results for B̂K , two important
remarks are in order. In the calculation of R̂stand. we used
the subtraction constants given in [10] where beside the
statistical ones we also quoted the systematic uncertain-
ties which arise from the spread of values obtained at vari-
ous values of the momenta flowing through external legs of
the elementary vertices (i.e., various aµ in the RI/MOM
scheme). In this paper the subtraction and renormaliza-
tion constants computed in [10] are combined with bare
matrix elements. The above mentioned systematic uncer-
tainties are accounted for by computing the renormalized
and subtracted matrix element for each value of aµ sepa-
rately. A second important remark is related to the accu-
racy of the two methods employed in this paper. From
Table 1 we see that the errors in R̂w/o subtr.(a) and in
R̂stand.(a) are comparable. As mentioned in the introduc-
tion the computation of the four-point correlation func-
tion needed for R̂w/o subtr.(a) is more demanding so that
– even though one avoids making subtractions – the sta-
tistical errors of the two methods are essentially equal.
The benefit of the method without subtraction is there-
fore not in improving the statistical quality of the results
but rather in preventing the occurrence of uncontrollable
systematic uncertainties that might plague the standard
method due to delicate cancellations of subtractions.

3.2 B̂K

With Wilson fermions, O(a) lattice artifacts can affect the
chiral behavior of the matrix elements relevant to the com-
putation of BK . A convenient way for a clean extraction
of BK has been explained in [17] and consists in study-
ing the dependence of the ratios R̂stand. and R̂w/o subtr. as
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Table 2. Results for the B̂K parameter as obtained through
the fit (18) for all three values of the lattice spacing and by
using both strategies (standard and the one without subtrac-
tions). The values of a/r0 are taken from [15]. We also show
the results of the linear extrapolation in lattice spacing to the
continuum limit

β a/r0 B̂stand.
K B̂

w/o subtr.
K

6.0 0.1863 1.119(54) 1.066(39)
6.2 0.1354 1.074(49) 1.041(37)
6.4 0.1027 1.058(44) 1.017(46)
∞ 0 0.980(114) 0.961(103)

functions of X, namely

R̂ = α + β X , (18)

where the fit parameter β is identified as B̂K(a), and α
is the parameter that measures the fitness of the chiral
behavior of the ratios R̂. We find that α for all our lat-
tices is consistent with zero. From such fits, at each lattice
spacing, we thus obtain B̂K(a), all of which are listed in
Table 2.

In the same table we also present the results of the
extrapolation to the continuum limit. That extrapolation
has been made linearly since none of the operators used
in (5), (10) and (12) has been improved. We see that the
results of the two procedures lead to a consistent value in
the continuum limit. That may also be viewed as evidence
that no uncontrollable systematic uncertainty used in the
standard method occurred while performing the delicate
subtraction procedure. If we imposed the two methods to
produce exactly the same result in the continuum limit
(similar to what has been done in [18]), we would have
obtained

B̂K = 0.969(67) . (19)

Our errors, after extrapolating to the continuum limit are
quite large anyway and we do not attempt to include the
quadratic term in the continuum extrapolation. The phys-
ical volume of all our lattices is about (1.7 fm)3. By using
the formulae of [19] it turns out that for the pseudoscalar
mesons consisting of degenerate quarks and with mass
mP � 500 MeV, the finite volume effects are negligibly
small. In the realistic situation, however, one of the va-
lence quarks is the strange one (which we can work with
directly on the lattice) and the other is the d-quark. That
situation would necessitate the chiral extrapolation, which
in the quenched theory would suffer from the (divergent)
quenched chiral logarithms. To assess some uncertainty
due to the degeneracy we may take the relative differ-
ence between the chiral logarithmic part known in the
degenerate and non-degenerate case in full ChPT. With
Λχ = 1 GeV, we obtain that B̂K for the kaon with non-
degenerate quarks would be only 2% smaller than the one
with degenerate quarks. Finally since our calculations are
made in the quenched approximation, our result cannot
make an impact on the world average value for B̂K , which

is actually completely dominated by the errors due to the
use of a quenched approximation [20]3. It is worth men-
tioning that the short distance piece in the unquenched
scenario would lead to B̂K larger by only 1% ÷ 2% com-
pared to the quenched one. Such an estimate arises after
replacing nf = 0 by nf = 4 in (14) and in αs(µ), and by
using Λ

(nf=4)
MS

= 294+42
−38 MeV [21].

4 Conclusion

In this letter we presented the results for the renormaliza-
tion group invariant bag parameter, B̂K , computed on the
lattice with Wilson quarks. Besides the standard proce-
dure, which requires a delicate subtraction of the spurious
mixing with other ∆S = 2, dimension-six, four-quark op-
erators, we also implemented the method based on the use
of a Ward identity that allows us to avoid the subtraction
procedure altogether.

Our lattice data are produced in the quenched approx-
imation at three values of the lattice spacing. At each
lattice spacing we use the non-perturbatively computed
renormalization and subtraction constants, presented in
[10]. The conversion to the standard renormalization in-
variant form is made after checking that our data follow
the renormalization scale dependence described by the
RI/MOM anomalous dimension coefficients known to two-
loops in perturbation theory. After having extrapolated to
the continuum limit we obtain the physically relevant re-
sults quoted in Table 2 and (19). As our final estimate
we chose to quote the results obtained using the method
“without subtractions”, namely

B̂K = 0.96(10) . (20)

Acknowledgements. We thank Guido Martinelli for the collab-
oration in the early stages of this work. The work by V.G. has
been funded by MCyT, Plan Nacional I+D+I (Spain) under
the Grant BFM2002-00568.

Appendix

In this appendix we show that the last two terms of (8)
vanish in the SU(3) symmetric limit mu = md = ms = m.

We will use charge conjugation and γ5-hermiticity
which, on the quark propagators Sf (x, y; U) (f is the fla-
vor and U the background gauge configuration), act in the
following way:

charge conj. C
Sf (x, y; U) = γ0γ2S

T
f (y, x; UC)γ2γ0 ,

hermitian conj. H
Sf (x, y; U) = γ5S

†
f (y, x; U)γ5 , (21)

3 A complete list of results for BK by using other quark
actions with recently updated references can be found in [20].
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where the superscripts T and † indicate respectively the
transpose and the hermitian conjugation on color and
Dirac indices.

Using these two symmetry properties it is
easy to show that the trace of an arbitrary
number of quark propagators and matrices
Γi ∈ {

I, γ5, γµ, γµγ5, σµν ≡ 1
2 [γµ, γν ], σ̃µν ≡ γ5σµν

}
,

computed on a gauge configuration UC , is the complex
conjugate of that computed on the gauge configuration
U , i.e.,

Tr [Γ1S1(x1, x2; U)Γ2S2(x2, x3; U) . . . ΓnSn(xn, x1; U)]
= Tr [Γ1S1(x1, x2; U c)Γ2S2(x2, x3; U c) . . .

× ΓnSn(xn, x1; U c)]∗ . (22)

This means that taking the real part of the trace corre-
sponds to the inclusion of the charge-conjugated configu-
ration U c in the gauge average. Since the QCD action is
symmetric under the charge conjugation, the average over
Nconf. → ∞ will contain the average over the configura-
tion U and its charge-conjugated one U c.

Another property needed is easily obtained by using
hermitian conjugation and reads

Tr [Γ1S1(x1, x2; U)Γ2S2(x2, x3; U) . . . ΓnSn(xn, x1; U)]

= [Πn
i=1E(Γi)] Tr [Sn(x1, xn; UC)Γn . . .

× S2(x3, x2; UC)Γ2S1(x2, x1; UC)Γ1], (23)

where E(Γi) = +1 for Γi ∈ {I, γ5, γµγ5} and E(Γi) = −1
for Γi ∈ {γµ, σµν , σ̃µν}.

We now analyze the correlation function of Q1 between
a scalar and a pseudoscalar source (since we work in the
SU(3) symmetric limit we will not display the flavor in-
dices):

1
2
〈K0

S(x)Q1(0)K0
P (y)〉

= 〈d̄(x)s(x) s̄(0)γµd(0)s̄(0)γµγ5d(0)
×d̄(y)γ5s(y)〉 (24)

= 〈Tr
[
S(x, 0; U)γµS(0, x; U)

]
× Tr

[
γµγ5S(0, y; U)γ5S(y, 0; U)

]
+ Tr

[
S(x, 0; U)γµγ5S(0, x; U)

]
× Tr

[
γµS(0, y; U)γ5S(y, 0; U)

]
− Tr

[
S(x, 0; U)γµS(0, y; U)γ5S(y, 0; U)

× γµγ5S(0, x; U)
]

− Tr
[
S(x, 0; U)γµγ5S(0, y; U)γ5S(y, 0; U)

× γµS(0, x; U)
]〉U ,

where 〈. . . 〉U denotes the average over gauge field config-
urations.

Using (23), we see immediately that the sum of traces
in (24) is equal to the same expression computed on UC

times E(γµ)E(γµγ5) = −1. Thus, including the charge-
conjugated configurations in the gauge average give iden-
tically zero for this correlator. Were we not working
with degenerate ms and mu = md masses, these terms
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a / r0

0.80
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Fig. 3. Extrapolation to the continuum limit. Empty sym-
bols correspond to the results obtained at fixed lattice spacing,
whereas the filled ones are the results of the linear extrapola-
tions. The shapes of the symbols correspond to two different
strategies to compute B̂K , as indicated in the legend

should be exponentially suppressed with respect to the
kaon contribution in the limit of large time distances,
because they correspond to the propagation of scalar
states. This point can be explicitly checked by computing
〈K̂0

S(tx)Q̂1(0)K̂0
P (ty)〉 in the same numerical simulation

for the other correlation functions appearing in (8).
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